PoreCamp2016 : De novo and hybrid assembly

0 Overview

By the end of this tutorial, you will be able to generate a de novo assembly of your nanopore reads,
improve the assembly with nanopolish, and evaluate the quality of your assembly. You will also do a
hybrid nanopore/lllumina assembly.

WARNING: Copying and pasting from this document into a terminal window seems to introduce strange
characters, so if something doesn’t work, please type in the commands from scratch.

1 Background

Sequence assembly is the process by which we infer the original sequence of the DNA (or RNA)
molecule. Ideally, we would be able to recover the linear or circular sequence of all chromosomes
present in the sample would be recovered in their entirety, with 100% accuracy, using a de novo method
that does not use any information other than what is in your set of reads derived from your sample. Long
reads are useful for resolving the order of nonunique or repetitive stretches of DNA, but high per read
error rates make it harder to call each nucleotide accurately.

Additional information:

e Assembly and error correction for nanopore reads :
http://porecamp.github.i10/2015/pdf/151215 jts porecamp.pdf (Jared
Simpson'’s slides from PoreCamp2015)

e De novo genome assembly: what every biologist should know :
http://www.nature.com/nmeth/journal/v9/n4/full/nmeth.1935.html

e Assembly Algorithms for NextGeneration Sequencing Data :
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874646/

e CANU assembler (a fork of the Celera assembler for long reads) :
http://canu.readthedocs.io/en/stable/#

e Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences :
http://bioinformatics.oxfordjournals.org/content/early/2016/03/18/bioi
nformatics.btwl52

e SPAdes: A New Genome Assembly Algorithm and Its Applications to SingleCell Sequencing :
http://online.liebertpub.com/doi/abs/10.1089/cmb.2012.0021

2 Miniasm de novo assembly on GroupA data

e Loginto CLIMB

e Create a directory for your files and ‘cd’ (change directory into it)
cd
mkdir -p Tutes/Assembly
cd Tutes/Assembly

e Create a subsample of NUMBER (e.g., 10000 or 0.8 of the records in the fastq file) fastq records
/home/ubuntu/.linuxbrew/bin/seqtk seq -f 0.8 \
/data2/minion/R9/GroupA/Ecoli/Ecoli.pass.1400.fastqg \

> Ecoli.pass.fastqg

Generate overlaps

minimap -Sw5 -L100 -m0 -t8 Ecoli.pass.fastqg Ecoli.pass.fastqg | \
gzip -1 > Ecoli.pass.reads.paf.gz

Generate layout

miniasm -f Ecoli.pass.fastq Ecoli.pass.reads.paf.gz \

> Ecoli.pass.contigs.gfa

Convert to FASTA

awk '/7S/{print ">"$2"\n"$3}' Ecoli.pass.contigs.gfa | fold \
> Ecoli.pass.contigs.fa

Run QUAST to evaluate the quality of the assembly (open quast_results/report.html)
quast.py -R /data2/refdata/NC _000913.fna Ecoli.pass.contigs.fa

Use nanopolish to improve the assembly

Create a bwa index for the Miniasm assembly so you can use it as a “reference”

bwa index Ecoli.pass.contigs.fa

Use bwa mem to align the reads to the assembly, then sort by coordinate and save as BAM
bwa mem -x ont2d -t 8 Ecoli.pass.contigs.fa Ecoli.pass.fastg \

| samtools view -Sb - \

| samtools sort -o Ecoli.pass.sorted.bam -

Create a BAM index file

samtools index Ecoli.pass.sorted.bam

Check your alignment looks sensible (using tview here, but IGV or Savant would look nicer)
samtools tview Ecoli.pass.sorted.bam Ecoli.pass.contigs.fa

Copy the nanopolish model files into the working directory to here

cp -p /home/ubuntu/src/nanopolish /etc/r9-models/*

Create a symbolic link to the “downloads” directory mentioned in the FASTQ header of the
FASTQ reads file

cat Ecoli.pass.fastg \

| sed "s,downloads,\/data2\/minion\/R9\/GroupA\/Ecoli\/downloads,g" \
> Ecoli-abspath.pass.fastqg

Convert FASTQ to FASTA

seqtk seq -g Ecoli-abspath.pass.fastg > Ecoli-abspath.pass.fasta
Align the reads to the assembly in event space: the reads are the FASTQ nanopore reads the
bam file is the nanopore reads mapped to the de novo assembly contigs
/home/ubuntu/src/nanopolish-master/nanopolish eventalign \

-t 8 \

—-—sam \

--reads Ecoli-abspath.pass.fasta \

—--bam Ecoli.pass.sorted.bam \

--genome Ecoli.pass.contigs.fa \

--models nanopolish models.fofn \

| samtools view -Sb - \

| samtools sort -o Ecoli.pass.eventalign.sorted.bam -

Set an environment variable to tell Python where to look for BioPython package export
PYTHONPATH=/usr/local/lib/python2.7/dist packages

Merge the individual segments together into the final assembly

python \

/nanodata/home/ubuntu/software/nanopolish/scripts/nanopolish merge.py
\

polished.*.fa > Ecoli.pass.polished genome.fa

Run QUAST to evaluate the quality of the polished assembly

quast.py -R /data2/refdata/NC_000913.fna Ecoli.pass.polished genome.fa

4 Repeat the process with the CANU assembler

CANU gives better de novo assembilies, but it might take 1.52 hours to run for our example data.
So later, when you have time, perhaps try to replicate the above analysis with CANU instead of
Miniasm.

Create a new directory for our files

mkdir canuassembly

cd canuassembly

Invoke CANU without any arguments to see the usage message. Then, generate an assembly
nohup nice \

canu -p Ecoli -d Ecoli pass canu -genomeSize=4.8m -nanopore- raw \
../Ecoli-abspath.pass.fastg &> canu.nohup.out &

As before, run QUAST on the output assembly file ASSEMBLY .fasta, then run nanopolish, and
run QUAST again on the polished_genome.fa 5 Hybrid assembly with SPAdes You could try
doing a hybrid assembly, map the reads back to the assembly, then view the aligned reads to see
how they compare.

nohup nice \

spades.py --only-assembler -k 21,51,71 \

-1 /data/ref/EcoliK12MG1655 1.fastg.gz \

-2 /data/ref/EcoliK12Mgl655 2.fastg.gz \

--nanopore Ecoli-abspath.fastqg \

-0 SPADES &> spades.nohup.out &

